• NVIDIA Ampere Architecture
  • 10,752 NVIDIA® CUDA® Cores
  • 336 NVIDIA® Tensor Cores
  • 84 NVIDIA® RT Cores
  • 48GB GDDR6 Memory with ECC
  • Up to 768GB/s Memory Bandwidth
  • 4x DisplayPort 1.4
  • NVLINK Supported
NVIDIA RTX A6000
PERFORMANCE
Multi-GPU Technology
Display Features
Software Support
NVIDIA RTX A6000
Performance Amplified
The NVIDIA RTX™ A6000 delivers everything professionals need to meet today‘s design, creative, and scientific challenges from their desktop. Built on the NVIDIA Ampere architecture, the RTX A6000 combines the latest-generation RT Cores, Tensor Cores, and CUDA® cores with 48 GB of graphics memory for unprecedented graphics, rendering, and AI performance. Additional support for remote-access software means you can access the power of your workstation from anywhere. Achieve breakthrough innovations with the world's most powerful graphics solution.
PERFORMANCE
NVIDIA Ampere Architecture
NVIDIA RTX™ A6000 is the most powerful workstation GPU NVIDIA offering high performance real-time ray tracing, AI-accelerated compute, and professional graphics rendering. Building upon the major SM enhancements from the Turing GPU, the NVIDIA Ampere architecture enhances ray tracing operations, tensor matrix operations, and concurrent executions of FP32 and INT32 operations.
CUDA Cores
The NVIDIA Ampere architecture-based CUDA cores bring up to 2X the single-precision floating point (FP32) throughput compared to the previous generation, providing significant performance improvements for graphics workflows such as 3D model development and compute for workloads such as desktop simulation for computer-aided engineering (CAE). The RTX A6000 enables two FP32 primary data paths, doubling the peak FP32 operations.
PCIe Gen 4
The RTX A6000 supports PCI Express Gen 4, which provides double the bandwidth of PCIe Gen 3, improving data-transfer speeds from CPU memory for data-intensive tasks like AI and data science.
Higher Speed GDDR6 Memory
Built with 48GB GDDR6 memory delivering 15% greater throughput for ray tracing, rendering, and AI workloads than the previous generation. The RTX A6000 provides the industry’s largest graphics memory footprint to address the largest datasets and models in latency-sensitive professional applications.
NVIDIA RTX IO
Accelerating GPU-based lossless decompression performance by up to 100x and 20x lower CPU utilization compared to traditional storage APIs using Microsoft’s new DirectStorage for Windows API. RTX IO moves data from the storage to the GPU in a more efficient, compressed form, and improving I/O performance.
5th Generation NVDEC Enginei
NVDEC is well suited for transcoding and video playback applications for real-time decoding. The following video codecs are supported for hardware-accelerated decoding: MPEG-2, VC-1, H.264 (AVCHD), H.265 (HEVC), VP8, VP9, and AV1.
3rd Generation Tensor Cores
Purpose-built for deep learning matrix arithmetic at the heart of neural network training and inferencing functions, the RTX A6000 includes enhanced Tensor Cores that accelerate more datatypes, and includes a new Fine-Grained Structured Sparsity feature that delivers up to 2X throughput for tensor matrix operations compared to the previous generation. New Tensor Cores will accelerate two new TF32 and BFloat16 precision modes. Independent floating-point and integer data paths allow more efficient execution of workloads using a mix of computation and addressing calculations.
2nd Generation RT Cores
Incorporating 2nd generation ray tracing engines, NVIDIA Ampere architecture-based GPUs provide incredible ray traced rendering performance. A single RTX A6000 board can render complex professional models with physically accurate shadows, reflections, and refractions to empower users with instant insight. Working in concert with applications leveraging APIs such as NVIDIA OptiX, Microsoft DXR and Vulkan ray tracing, systems based on the RTX A6000 will power truly interactive design workflows to provide immediate feedback for unprecedented levels of productivity. The RTX A6000 is up to 2X faster in ray tracing compared to the previous generation. This technology also speeds up the rendering of ray-traced motion blur for faster results with greater visual accuracy.
Error Correcting Code (ECC)
Meet strict data integrity requirements for mission critical applications with uncompromised computing accuracy and reliability for workstations.
Graphics Preemption
Pixel-level preemption provides more granular control to better support time-sensitive tasks such as VR motion tracking.
Higher Speed GDDR6 Memory
Built with 48GB GDDR6 memory delivering 15% greater throughput for ray tracing, rendering, and AI workloads than the previous generation. The RTX A6000 provides the industry’s largest graphics memory footprint to address the largest datasets and models in latency-sensitive professional applications.
7th Generation NVENC Enginei
NVENC can take on the most demanding 4K or 8K video encoding tasks to free up the graphics engine and the CPU for other operations. The RTX A6000 provides better encoding quality than software-based x264 encoders.
Multi-GPU Technology
3rd Generation NVLinkii
Connect two RTX A6000 cards with NVLink to double the effective memory footprint and scale application performance by enabling GPU-to-GPU data transfers at rates up to 112.5 GB/s (total bandwidth).


NVIDIA® SLI® Technology
Leverage multiple GPUs to dynamically scale graphics performance, enhance image quality, expand display real estate, and assemble a fully virtualized system.
DisplayPort 1.4a
Support up to four 5K monitors @ 60Hz, or dual 8K displays @ 60Hz per card. The RTX A6000 supports HDR color for 4K @ 60Hz for 10/12b HEVC decode and up to 4K @ 60Hz for 10b HEVC encode. Each DisplayPort connector can drive ultra-high resolutions of 4096x2160 @ 120 Hz with 30-bit color.
NVIDIA® Quadro View™ Desktop Management Software
Gain unprecedented end-user control of the desktop experience for increased productivity in single large display or multi-display environments.
Frame Lock Connector Latch
Each frame lock connector is designed with a self-locking retention mechanism to secure its connection with the frame lock cable to provide robust connectivity and maximum productivity.
Ultra-High-Resolution Desktop Support
Get more Mosaic topology choices with high resolution displays devices with a 32K Max desktop size.
NVIDIA® Quadro Sync IIiii
Synchronize the display and image output of up to 32 displays from 8 GPUs (connected through two Sync II boards) in a single system, reducing the number of machines needed to create an advanced video visualization environment.
OpenGL Quad Buffered Stereo Support
Provide a smooth and immersive 3D Stereo experience for professional applications.
Professional 3D Stereo Synchronization
Robust control of stereo effects through a dedicated connection to directly synchronize 3D stereo hardware to an NVIDIA RTX professional graphics card.
Software Support
NVIDIA Virtual GPU Software
Support for NVIDIA virtual GPU (vGPU) software allows a personal workstation to be repurposed into multiple high-performance virtual workstation instances enabling remote users, to share resources to drive high-end design, AI, and compute workloads.
Software Optimized for AI
Deep learning frameworks such as Caffe2, MXNet, CNTK, TensorFlow, and others deliver dramatically faster training times and higher multi-node training performance. GPU accelerated libraries such as cuDNN, cuBLAS, and TensorRT delivers higher performance for both deep learning inference and High-Performance Computing (HPC) applications.
Unified Memory
A single, seamless 49-bit virtual address space allows for the transparent migration of data between the full allocation of CPU and GPU memory.
NVIDIA® GPUDirect for Video
GPUDirect for Video speeds communication between the GPU and video I/O devices by avoiding unnecessary system memory copies and CPU overhead.
NVIDIA® Quadro Experience™
Quadro Experience delivers a suite of productivity tools to your desktop workstation, including 4K recording, automatic alerts for the latest Quadro driver updates, and access gaming features. The application is available to download at www.nvidia.com/quadro-experience.
NVIDIA® CUDA® Parallel Computing Platform
Natively execute standard programming languages like C/C++ and Fortran, and APIs such as OpenCL, OpenACC and Direct Compute to accelerates techniques such as ray tracing, video and image processing, and computation fluid dynamics.
NVIDIA Enterprise-Management Tools
Maximize system uptime, seamlessly manage wide-scale deployments and remotely control graphics and display settings for efficient operations.
i - This feature requires implementation by software applications and it is not a stand-alone utility. Please contact quadrohelp@nvidia.com for details on availability.
ii - Application must be aware of and be optimized for NVLink to take advantage of this capability.
iii - Feature supported in future driver release.
* Product specifications and product appearance may differ from country to country. We recommend that you check with your local dealers for the specifications and appearance of the products available in your country. Colors of products may not be perfectly accurate due to variations caused by photographic variables and monitor settings so it may vary from images shown on this site. Although we endeavor to present the most accurate and comprehensive information at the time of publication, we reserve the right to make changes without prior notice.